SURFACES OF WEAK DISCONTINUITY FOR CUBICALLY ANISOTROPIC SOLID BODIES

S. M. Bosyakov ${ }^{\text {a }}$ and O. N. Sklyar ${ }^{\text {b }}$

UDC 539.3

In the context of the general theory of characteristics, the velocities of propagation of the discontinuity surfaces in cubically anisotropic deformable media are obtained.

We consider solid bodies, the elastic properties of which are described by the Hooke law [1, 2]

$$
\begin{gather*}
\sigma_{i i}=\left(A_{11}-A_{12}\right) e_{i j}+A_{12} \theta, \sigma_{i j}=2 A_{44} e_{i j}, i \neq j, \\
e_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right), \quad \theta=\sum_{k=1}^{3} \partial_{k} u_{k} \tag{1}\\
A_{i j}=\text { const }, \quad \partial_{i}=\frac{\partial}{\partial x_{i}}, \quad i, j=\overline{1,3}
\end{gather*}
$$

Here $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$.
We write the equations of motion in the following form [1]:

$$
\begin{equation*}
\sum_{j=1}^{3} \partial_{j} \sigma_{i j}+X_{i}=\rho_{0} \frac{\partial^{2} u_{i}}{\partial t^{2}} \tag{2}
\end{equation*}
$$

Then, substituting the expressions for the stress tensor from (1) into (2), we arrive at

$$
\begin{equation*}
\left(\Delta+\varepsilon \partial_{i}^{2}\right) u_{i}+\sigma \partial_{i} \theta+\bar{X}_{i}=\rho \frac{\partial^{2} u_{i}}{\partial t^{2}} \tag{3}
\end{equation*}
$$

where

$$
\Delta=\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}, \quad \varepsilon=\frac{A_{11}-A_{12}}{A_{44}}-2, \quad \sigma=\frac{A_{12}}{A_{44}}+1, \quad \rho=\frac{\rho_{0}}{A_{44}}, \quad \bar{X}_{i}=\frac{X_{i}}{A_{44}} .
$$

We will consider the Cauchy problem for the system of equations (3) with the following initial conditions:

$$
\begin{equation*}
\left.u_{i}\right|_{t=0}=f_{i}\left(0, x_{1}, x_{2}, x_{3}\right),\left.\frac{\partial u_{i}}{\partial t}\right|_{t=0}=\varphi_{i}\left(0, x_{1}, x_{2}, x_{3}\right) . \tag{4}
\end{equation*}
$$

In the general case, we will prescribe the proper functions u_{i} and their derivatives of the first order on the surface $Z=Z\left(t, x_{1}, x_{2}, x_{3}\right)$ and find an equation of characteristics from the condition of impossibility of determination of $\partial^{2} u_{i} / \partial t^{2}$ [3].
${ }^{\text {a }}$ Belarusian State University; ${ }^{\text {b }}$ Belarusian State Polytechnic Academy, Minsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 3, pp. 662-664, May-June, 2000. Original article submitted August $3,1999$.

We introduce new variables into (3) in accordance with the scheme [4]

$$
\binom{t \equiv x_{0}, x_{1}, x_{2}, x_{3}}{Z \equiv Z_{0}, Z_{1}, Z_{2}, Z_{3}}
$$

We write the expressions of the derivatives with respect to the former variables in terms of the derivatives with respect to the new variables:

$$
\begin{gather*}
\frac{\partial u_{i}}{\partial x_{k}}=\sum_{n=0}^{3} \frac{\partial u_{i}}{\partial Z_{n}} \frac{\partial Z_{n}}{\partial x_{k}}, \\
\frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{k}}=\sum_{m, n=0}^{3} \frac{\partial^{2} u_{i}}{\partial Z_{m} \partial Z_{n}} \frac{\partial Z_{m}}{\partial x_{i}} \frac{\partial Z_{n}}{\partial x_{k}}+\sum_{n=0}^{3} \frac{\partial u_{i}}{\partial Z_{n}} \frac{\partial^{2} Z_{n}}{\partial x_{l} \partial x_{k}} . \tag{5}
\end{gather*}
$$

Substituting (5) into (3) and writing only those terms that contain $\partial^{2} u_{i} / \partial Z^{2}$, we arrive at the following system of equations in new variables:

$$
\begin{equation*}
\frac{\partial^{2} u_{i}}{\partial Z^{2}} g^{2}+\varepsilon \frac{\partial^{2} u_{i}}{\partial Z^{2}} p_{i}^{2}+\sigma p_{i} \sum_{k=1}^{3} p_{k} \frac{\partial^{2} u_{k}}{\partial Z^{2}}-\rho \frac{\partial^{2} u_{i}}{\partial z^{2}} p_{0}^{2}+\ldots=0 \tag{6}
\end{equation*}
$$

Here

$$
p_{i}=\frac{\partial Z}{\partial x_{i}}, \quad g^{2}=\sum_{k=1}^{3} p_{k}^{2}, \quad p_{0}=\frac{\partial Z}{\partial t} .
$$

Let $\omega_{i j}$ be the coefficients at the second derivative function u_{i} with respect to Z^{2} in the j th equation of system (6), $i, j=\overline{1,3}$. In our case

$$
\omega_{i j}=\sigma p_{i} p_{j}+\delta_{i j}\left(g^{2}+\varepsilon p_{i}^{2}-\rho p_{0}^{2}\right), \quad i, j=\overline{1,3}, \quad \delta_{i j}= \begin{cases}0, & i \neq j \tag{7}\\ 1, & i=j\end{cases}
$$

The surface $Z=0$ will be the characteristic one if the determinant composed of the coefficients at $\partial^{2} u_{i} / \partial Z^{2}$ is equal to zero, i.e., if the equality det $\left\|\omega_{i j}\right\|=0$ is fulfilled.

Expanding the determinant, we obtain the following equation of propagation of the characteristics:

$$
\begin{gather*}
\left(g^{2}-\rho p_{0}^{2}\right)^{3}+(\varepsilon+\sigma) g^{2}\left(g^{2}-\rho p_{0}^{2}\right)^{2}+\left(\varepsilon^{2}+2 \varepsilon \sigma\right)\left(g^{2}-\rho p_{0}^{2}\right)\left(p_{1}^{2} p_{2}^{2}+p_{1}^{2} p_{3}^{2}+p_{2}^{2} p_{3}^{2}\right)+ \\
+\left(2 \sigma^{3}-3 \sigma^{2}(\varepsilon+\sigma)+(\varepsilon+\sigma)^{3}\right) p_{1}^{2} p_{2}^{2} p_{3}^{2}=0 \tag{8}
\end{gather*}
$$

Taking into consideration that the velocity of displacement of the characteristic surface is $P=-p_{0} / g$ and the direction cosines of the normal are $\cos \alpha_{k}=p_{k} / g$, we divide (8) by g^{6}. We will write the obtained equation under the assumption that the direction of propagation of the characteristic surface coincides with the direction of the normal to this surface:

$$
\left(1-\rho P^{2}\right)^{3}+(\varepsilon+\sigma)\left(1-\rho P^{2}\right)^{2}=0
$$

Whence we have the following possible velocities of displacement of the discontinuity surface:

$$
P_{1}=\sqrt{\left(\frac{1}{\rho}\right), P_{2}=\sqrt{ }\left(\frac{1+\varepsilon+\sigma}{\rho}\right)}
$$

Now we clear up the character of discontinuity. We assume that the functions u_{i} as such and their derivatives of the first order remain continuous on passing across the surface $Z=0$, while the derivatives of the second order $\partial^{2} u_{i} / \partial x_{k} \partial x_{l}, k, l=\overline{0,3}$, undergo discontinuity. Under kinematic conditions of compatibility [3], each such derivative experiences an abrupt change that is proportional to the components of the normal of the characteristic surface. Whence follows the existence of proportionality coefficients h_{k} such that

$$
\left[u_{x_{k}} u_{x_{i}}\right]=u_{x_{k} k_{l}}^{+}-u_{x_{k} x_{l}}^{-}=h_{k} Z_{x_{i}} .
$$

Substituting these expressions into the kinematic conditions of compatibility, we obtain the system of homogeneous equations for the multipliers h_{j}, the determinant of which is equal to zero:

$$
\begin{equation*}
\sum_{j=1}^{3} \omega_{i j} h_{j}=0 \tag{9}
\end{equation*}
$$

By virtue of (7) Eqs. (9) acquire the form

$$
\left(g^{2}+\varepsilon p_{i}^{2}-\rho p_{0}^{2}\right) h_{i}+\sigma p_{i} \sum_{k=1}^{3} p_{k} h_{k}=0, \quad i=\overline{1,3}
$$

Since $p_{i}=g \cos \left(\vec{n}, x_{i}\right)$, where $\overrightarrow{n i s}$ the direction of the normal to the surface $Z=0$, we can represent the above equations as

$$
\left(g^{2}+\varepsilon g^{2} \cos ^{2}\left(n, x_{i}\right)-\rho p_{0}^{2}\right) h_{i}+\sigma g^{2} \cos \left(n, x_{i}\right) \sum_{k=1}^{3} \cos \left(n, x_{k}\right) h_{k}=0
$$

or

$$
\left(g^{2}-\rho p_{0}^{2}\right) h_{i}+(\varepsilon+\sigma) g^{2} \cos \left(n, x_{i}\right) h_{n}=0
$$

where h_{n} is the projection of the vector $\vec{h}=\left(h_{1}, h_{2}, h_{3}\right)$ onto the normal \vec{n} to the surface $Z=0$. In vector form,

$$
\left(g^{2}-\rho p_{0}^{2}\right) \vec{h}+(\varepsilon+\sigma) g^{2} h_{n} \vec{e}=0
$$

If we take the displacement velocity P_{1}, then the coefficient on \vec{h} is equal to zero and $h_{n}=0$, i.e., \vec{h} lies in the plane tangential to the surface $Z=0$; therefore the discontinuity surface is a transverse wave. If we take the velocity P_{2}, then \vec{h} differs from $\vec{e}_{1 n}$ a numerical multiplier, i.e., \vec{h} is directed along the normal to the surface; consequently, $Z=0$ is a longitudinal wave.

Thus, a solution of system (3) exists which as such is continuous together with the derivatives of the first order, and its second derivatives have a discontinuity of the first kind on the surface $Z=0$. This means that the solution of Eqs. (3) has a weak discontinuity on the surface $Z=0$ and only the characteristic surface can be the surface of weak discontinuity.

This effect was known earlier for the case of isotropic bodies [3].

NOTATION

$e_{i j}$ and $\sigma_{i j}$, components of the strain tensor and the stress tensor; A_{11}, A_{12}, and A_{44}, material constants of the elastic medium; \vec{u}, translational vector of the body points; X_{i}, mass forces; ρ_{0}, density of the elastic
medium; $\Delta \sum_{k=1}^{3} \partial_{k}^{2}, p_{k}=\frac{\partial Z}{\partial x_{k}}$, and $\theta=\sum_{k=1}^{3} \frac{\partial u_{i}}{\partial x_{k}}$, volume strain; $\cos \alpha_{i}$, direction cosines of the normal; \vec{e}, unit vector of the normal to the surface $Z=0, i, j=\overline{1,3}$.

REFERENCES

1. V. Novatskii, Elasticity Theory [in Russian], Moscow (1975).
2. L. D. Landau and E. M. Lifshits, Elasticity Theory [in Russian], Moscow (1987).
3. V. I. Smirnov, A Course in Higher Mathematics [in Russian], Vol. 4, Pt. II, Moscow (1981).
4. T. Levi-Civita, Caracteristiques des Systemes Differentieles et Propagation des Cades, Paris (1932).
